Перевод: с английского на все языки

со всех языков на английский

to subject to term

  • 1 term

    4) колонна, столб, украшенные скульптурой
    5) матем. член, член уравнения
    6) мн. ч. условия договора
    7) юр. аренда на срок; срок выполнения обязательств
    - term of life - term of validity - acceptable term - short term - unacceptable term
    * * *
    1.   срок; период
    2.   условие
    3.   термин
    4.   колонна со скульптурой

    Англо-русский строительный словарь > term

  • 2 subject to the terms and conditions in this agreement

    English-Russian big medical dictionary > subject to the terms and conditions in this agreement

  • 3 term

    A word or phrase that stands for a concept used in a particular subject area.

    English-Arabic terms dictionary > term

  • 4 subject term

    English-Russian library and information terminology dictionary > subject term

  • 5 subject to a term of 5 days

    unter Einhaltung einer Frist von 5 Tagen

    First banking dictionary > subject to a term of 5 days

  • 6 The phenomenon of laminar flame propagation in reactive mediums is the subject of long-term scientific studies

    Универсальный англо-русский словарь > The phenomenon of laminar flame propagation in reactive mediums is the subject of long-term scientific studies

  • 7 Bevan, Edward John

    [br]
    b. 11 December 1856 Birkenhead, England
    d. 17 October 1921 London, England
    [br]
    English co-inventor of the " viscose rayon " process for making artificial silk.
    [br]
    Bevan began his working life as a chemist in a soap works at Runcorn, but later studied chemistry at Owens College, Manchester. It was there that he met and formed a friendship with C.F. Cross, with whom he started to work on cellulose. Bevan moved to a paper mill in Scotland but then went south to London, where he and Cross set up a partnership in 1885 as consulting and analytical chemists. Their work was mainly concerned with the industrial utilization of cellulose, and with the problems of the paper and jute industries. Their joint publication, A Text-book of Paper-making, which first appeared in 1888 and went into several editions, became the standard reference and textbook on the subject. The book has a long introductory chapter on cellulose.
    In 1892 Cross, Bevan and Clayton Beadle discovered viscose, or sodium cellulose xanthate, and took out the patent which was to be the foundation of the "viscose rayon" industry. They had their own laboratory at Station Avenue, Kew Gardens, where they carried out much work that eventually resulted in viscose: cellulose, usually in the form of wood pulp, was treated first with caustic soda and then with carbon disulphide to form the xanthate, which was then dissolved in a solution of dilute caustic soda to produce a viscous liquid. After being aged, the viscose was extruded through fine holes in a spinneret and coagulated in a dilute acid to regenerate the cellulose as spinnable fibres. At first there was no suggestion of spinning it into fibre, but the hope was to use it for filaments in incandescent electric light bulbs. The sheen on the fibres suggested their possible use in textiles and the term "artificial silk" was later introduced. Cross and Bevan also discovered the acetate "Celanese", which was cellulose triacetate dissolved in acetone and spun in air, but both inventions needed much development before they could be produced commercially.
    In 1892 Bevan turned from cellulose to food and drugs and left the partnership to become Public Analyst to Middlesex County Council, a post he held until his death, although in 1895 he and Cross published their important work Cellulose. He was prominent in the affairs of the Society of Public Analysts and became one of its officials.
    [br]
    Bibliography
    1888, with C.F.Cross, A Text-book of Papermaking.
    1892, with C.F.Cross and C.Beadle, British patent no. 8,700 (viscose). 1895, with C.F.Cross, Cellulose.
    Further Reading
    Obituary, 1921, Journal of the Chemical Society.
    Obituary, 1921, Journal of the Society of Chemical Industry.
    Edwin J.Beer, 1962–3, "The birth of viscose rayon", Transactions of the Newcomen Society 35 (an account of the problems of developing viscose rayon; Beer worked under Cross in the Kew laboratories).
    RLH

    Biographical history of technology > Bevan, Edward John

  • 8 Cross, Charles Frederick

    [br]
    b. 11 December 1855 Brentwood, Middlesex, England
    d. 15 April 1935 Hove, England
    [br]
    English chemist who contributed to the development of viscose rayon from cellulose.
    [br]
    Cross was educated at the universities of London, Zurich and Manchester. It was at Owens College, Manchester, that Cross first met E.J. Bevan and where these two first worked together on the nature of cellulose. After gaining some industrial experience, Cross joined Bevan to set up a partnership in London as analytical and consulting chemists, specializing in the chemistry and technology of cellulose and lignin. They were at the Jodrell laboratory, Kew Gardens, for a time and then set up their own laboratory at Station Avenue, Kew Gardens. In 1888, the first edition of their joint publication A Textbook of Paper-making, appeared. It went into several editions and became the standard reference and textbook on the subject. The long introductory chapter is a discourse on cellulose.
    In 1892, Cross, Bevan and Clayton Beadle took out their historic patent on the solution and regeneration of cellulose. The modern artificial-fibre industry stems from this patent. They made their discovery at New Court, Carey Street, London: wood-pulp (or another cheap form of cellulose) was dissolved in a mixture of carbon disulphide and aqueous alkali to produce sodium xanthate. After maturing, it was squirted through fine holes into dilute acid, which set the liquid to give spinnable fibres of "viscose". However, it was many years before the process became a commercial operation, partly because the use of a natural raw material such as wood involved variations in chemical content and each batch might react differently. At first it was thought that viscose might be suitable for incandescent lamp filaments, and C.H.Stearn, a collaborator with Cross, continued to investigate this possibility, but the sheen on the fibres suggested that viscose might be made into artificial silk. The original Viscose Spinning Syndicate was formed in 1894 and a place was rented at Erith in Kent. However, it was not until some skeins of artificial silk (a term to which Cross himself objected) were displayed in Paris that textile manufacturers began to take an interest in it. It was then that Courtaulds decided to investigate this new fibre, although it was not until 1904 that they bought the English patents and developed the first artificial silk that was later called "rayon". Cross was also concerned with the development of viscose films and of cellulose acetate, which became a rival to rayon in the form of "Celanese". He retained his interest in the paper industry and in publishing, in 1895 again collaborating with Bevan and publishing a book on Cellulose and other technical articles. He was a cultured man and a good musician. He was elected a Fellow of the Royal Society in 1917.
    [br]
    Principal Honours and Distinctions
    FRS 1917.
    Bibliography
    1888, with E.J.Bevan, A Text-book of Papermaking. 1892, British patent no. 8,700 (cellulose).
    Further Reading
    Obituary Notices of the Royal Society, 1935, London. Obituary, 1935, Journal of the Chemical Society 1,337. Chambers Concise Dictionary of Scientists, 1989, Cambridge.
    Edwin J.Beer, 1962–3, "The birth of viscose rayon", Transactions of the Newcomen Society 35 (an account of the problems of developing viscose rayon; Beer worked under Cross in the Kew laboratories).
    C.Singer (ed.), 1978, A History of Technology, Vol. VI, Oxford: Clarendon Press.
    RLH

    Biographical history of technology > Cross, Charles Frederick

  • 9 Gabor, Dennis (Dénes)

    [br]
    b. 5 June 1900 Budapest, Hungary
    d. 9 February 1979 London, England
    [br]
    Hungarian (naturalized British) physicist, inventor of holography.
    [br]
    Gabor became interested in physics at an early age. Called up for military service in 1918, he was soon released when the First World War came to an end. He then began a mechanical engineering course at the Budapest Technical University, but a further order to register for military service prompted him to flee in 1920 to Germany, where he completed his studies at Berlin Technical University. He was awarded a Diploma in Engineering in 1924 and a Doctorate in Electrical Engineering in 1927. He then went on to work in the physics laboratory of Siemens \& Halske. He returned to Hungary in 1933 and developed a new kind of fluorescent lamp called the plasma lamp. Failing to find a market for this device, Gabor made the decision to abandon his homeland and emigrate to England. There he joined British Thompson-Houston (BTH) in 1934 and married a colleague from the company in 1936. Gabor was also unsuccessful in his attempts to develop the plasma lamp in England, and by 1937 he had begun to work in the field of electron optics. His work was interrupted by the outbreak of war in 1939, although as he was not yet a British subject he was barred from making any significant contribution to the British war effort. It was only when the war was near its end that he was able to return to electron optics and begin the work that led to the invention of holography. The theory was developed during 1947 and 1948; Gabor went on to demonstrate that the theories worked, although it was not until the invention of the laser in 1960 that the full potential of his invention could be appreciated. He coined the term "hologram" from the Greek holos, meaning complete, and gram, meaning written. The three-dimensional images have since found many applications in various fields, including map making, medical imaging, computing, information technology, art and advertising. Gabor left BTH to become an associate professor at the Imperial College of Science and Technology in 1949, a position he held until his retirement in 1967. In 1971 he was awarded the Nobel Prize for Physics for his work on holography.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Medal 1968. Franklin Institute Michelson Medal 1968. CBE 1970. Nobel Prize for Physics 1971.
    Bibliography
    1948. "A new microscopic principle", Nature 161:777 (Gabor's earliest publication on holography).
    1949. "Microscopy by reconstructed wavefronts", Proceedings of the Royal Society A197: 454–87.
    1951, "Microscopy by reconstructed wavefronts II", Proc. Phys. Soc. B, 64:449–69. 1966, "Holography or the “Whole Picture”", New Scientist 29:74–8 (an interesting account written after laser beams were used to produce optical holograms).
    Further Reading
    T.E.Allibone, 1980, contribution to Biographical Memoirs of Fellows of the Royal Society 26: 107–47 (a full account of Gabor's life and work).
    JW

    Biographical history of technology > Gabor, Dennis (Dénes)

  • 10 Merz, Charles Hesterman

    [br]
    b. 5 October 1874 Gateshead, England
    d. 14 October 1940 London, England
    [br]
    English engineer who pioneered large-scale integration of electricity-supply networks, which led to the inauguration of the British grid system.
    [br]
    Merz was educated at Bootham School in York and Armstrong College in Newcastle. He served an apprenticeship with the Newcastle Electric Supply Company at their first power station, Pandon Dene, and part of his training was at Robey and Company of Lincoln, steam engine builders, and the British Thomson-Houston Company, electrical equipment manufacturers. After working at Bankside in London and at Croydon, he became Manager of the Croydon supply undertaking. In 1898 he went to Cork on behalf of BTH to build and manage a tramway and electricity company. It was there that he met William McLellan, who later joined him in establishing a firm of consulting engineers. Merz, with his vision of large-scale electricity supply, pioneered an integrated traction and electricity scheme in north-eastern England. He was involved in the reorganization of electricity schemes in many countries and established a reputation as a leading parliamentary witness. Merz was appointed Director of Experiments and Research at the Admiralty, where his main contribution was the creation of an organization of outstanding engineers and scientists during the First World War. In 1925 he was largely responsible for a report of the Weir Committee which led to the Electricity (Supply) Act of 1926, the formation of the Central Electricity Board and the construction of the National Grid. The choice of 132 kV as the original grid voltage was that of Merz and his associates, as was the origin of the term "grid". Merz and his firm produced many technical innovations, including the first power-system control room and Merz-Price and Merz-Hunter forms of cable and transformer protection.
    [br]
    Principal Honours and Distinctions
    Institution of Electrical Engineers Faraday Medal 1931.
    Bibliography
    1903–4, with W.McLennan, "Power station design", Journal of the Institution of Electrical Engineers 33:696–742 (a classic on its subject).
    1929, "The national scheme of electricity supply in Great Britain", Proceedings of the British Association, Johannesburg.
    Further Reading
    J.Rowland, 1960, Progress in Power. The Contribution of Charles Merz and His Associates to Sixty Years of Electrical Development 1899–1959, London (the most detailed account).
    L.Hannah, 1979, Electricity Before Nationalisation, London.
    ——, 1985, Dictionary of Business Biography, ed. J.Jeremy, London, pp. 221–7 (a short account).
    GW

    Biographical history of technology > Merz, Charles Hesterman

  • 11 Appert, Nicolas

    [br]
    b. 1749 Châlons-sur-Marne, France d. 1841
    [br]
    French confectioner who invented canning as a method of food preservation.
    [br]
    As the son of an inn keeper, Nicolas Appert would have learned about pickling and brewing, but he chose to become a chef and confectioner, establishing himself in the rue des Lombards in Paris in 1780. He prospered there until about 1795, and in that year he began experimenting in ways to preserve foodstuffs, succeeding with soups, vegetables, juices, dairy products, jellies, jams and syrups. His method was to place food in glass jars, seal the jars with cork and sealing wax, then sterilize them by immersion in boiling water for a predetermined time.
    In 1810 the French Government offered a 12,000 franc award to anyone succeeding in preserving high-quality foodstuffs for its army and navy. Appert won the award and in 1812 used the money to open the world's first food-bottling factory, La Maison Appert, in the town of Massey, near Paris. He established agents in all the major sea ports, recognizing the marine market as his most likely customer, and supplied products to Napoleon's troops in the field. By 1820 Appert's method was in use all over the United States, in spite of the simultaneous development of other containers of tin or other metals by an English merchant, Peter Durand, and the production of canned food products by the Bermondsey firm of Donkin \& Hall, London. The latter had opened the first canning factory in England in 1811.
    Initially Appert used glass jars and bottles, but in 1822 he changed to tin-plated metal cans. To heat the cans he used an autoclave, which heated the water to a temperature higher than its boiling point. A hammer and chisel were needed to open cans until the invention of a can opener by an Englishman named Yates in 1855. Despite Appert's successes, he received little financial reward and died in poverty; he was buried in a common grave.
    [br]
    Bibliography
    1810, L'Art de conserver pendant plusieurs années toutes les sustenances animales et végétales (the Société d'Encouragement pour l'Industrie Nationale produced a report in its annual bulletin in 1809).
    Further Reading
    English historians have tended to concentrate on Bryan Donkin, who established tin cans as the primary container for long-term food preservation.
    J.Potin, 1891, Biographie de Nicolas Appert.
    1960, Canning and Packing 2–5.
    AP

    Biographical history of technology > Appert, Nicolas

  • 12 Arnold, John

    SUBJECT AREA: Horology
    [br]
    b. 1735/6 Bodmin (?), Cornwall, England
    d. 25 August 1799 Eltham, London, England
    [br]
    English clock, watch, and chronometer maker who invented the isochronous helical balance spring and an improved form of detached detent escapement.
    [br]
    John Arnold was apprenticed to his father, a watchmaker, and then worked as an itinerant journeyman in the Low Countries and, later, in England. He settled in London in 1762 and rapidly established his reputation at Court by presenting George III with a miniature repeating watch mounted in a ring. He later abandoned the security of the Court for a more precarious living developing his chronometers, with some financial assistance from the Board of Longitude. Symbolically, in 1771 he moved from the vicinity of the Court at St James's to John Adam Street, which was close to the premises of the Royal Society for the Encouragement of Arts, Manufactures \& Commerce.
    By the time Arnold became interested in chronometry, Harrison had already demonstrated that longitude could be determined by means of a timekeeper, and the need was for a simpler instrument that could be sold at an affordable price for universal use at sea. Le Roy had shown that it was possible to dispense with a remontoire by using a detached escapement with an isochronous balance; Arnold was obviously thinking along the same lines, although he may not have been aware of Le Roy's work. By 1772 Arnold had developed his detached escapement, a pivoted detent which was quite different from that used on the European continent, and three years later he took out a patent for a compensation balance and a helical balance spring (Arnold used the spring in torsion and not in tension as Harrison had done). His compensation balance was similar in principle to that described by Le Roy and used riveted bimetallic strips to alter the radius of gyration of the balance by moving small weights radially. Although the helical balance spring was not completely isochronous it was a great improvement on the spiral spring, and in a later patent (1782) he showed how it could be made more truly isochronous by shaping the ends. In this form it was used universally in marine chronometers.
    Although Arnold's chronometers performed well, their long-term stability was less satisfactory because of the deterioration of the oil on the pivot of the detent. In his patent of 1782 he eliminated this defect by replacing the pivot with a spring, producing the spring detent escapement. This was also done independendy at about the same time by Berthoud and Earnshaw, although Earnshaw claimed vehemently that Arnold had plagiarized his work. Ironically it was Earnshaw's design that was finally adopted, although he had merely replaced Arnold's pivoted detent with a spring, while Arnold had completely redesigned the escapement. Earnshaw also improved the compensation balance by fusing the steel to the brass to form the bimetallic element, and it was in this form that it began to be used universally for chronometers and high-grade watches.
    As a result of the efforts of Arnold and Earnshaw, the marine chronometer emerged in what was essentially its final form by the end of the eighteenth century. The standardization of the design in England enabled it to be produced economically; whereas Larcum Kendall was paid £500 to copy Harrison's fourth timekeeper, Arnold was able to sell his chronometers for less than one-fifth of that amount. This combination of price and quality led to Britain's domination of the chronometer market during the nineteenth century.
    [br]
    Bibliography
    30 December 1775, "Timekeepers", British patent no. 1,113.
    2 May 1782, "A new escapement, and also a balance to compensate the effects arising from heat and cold in pocket chronometers, and for incurving the ends of the helical spring…", British patent no. 1,382.
    Further Reading
    R.T.Gould, 1923, The Marine Chronometer: Its History and Development, London; reprinted 1960, Holland Press (provides an overview).
    V.Mercer, 1972, John Arnold \& Son Chronometer Makers 1726–1843, London.
    DV

    Biographical history of technology > Arnold, John

  • 13 Booth, Hubert Cecil

    [br]
    b. 1871 Gloucester, England d. 1955
    [br]
    English mechanical, civil and construction engineer best remembered as the inventor of the vacuum cleaner.
    [br]
    As an engineer Booth contributed to the design of engines for Royal Navy battleships, designed and supervised the erection of a number of great wheels (in Blackpool, Vienna and Paris) and later designed factories and bridges.
    In 1900 he attended a demonstration, at St Paneras Station in London, of a new form of railway carriage cleaner that was supposed to blow the dirt into a container. It was not a very successful experiment and Booth, having considered the problem carefully, decided that sucking might be better than blowing. He tried out his idea by placing a piece of damp cloth over an upholstered armchair. When he sucked air by mouth through his cloth the dirt upon it was tangible proof of his theory.
    Various attempts were being made at this time, especially in America, to find a successful cleaner of carpets and upholstery. Booth produced the first truly satisfactory machine, which he patented in 1901, and coined the term "vacuum cleaner". He formed the Vacuum Cleaner Co. (later to become Goblin BVC Ltd) and began to manufacture his machines. For some years the company provided a cleaning service to town houses, using a large and costly vacuum cleaner (the first model cost £350). Painted scarlet, it measured 54×10×42 in. (137×25×110 cm) and was powered by a petrol-driven 5 hp piston engine. It was transported through the streets on a horse-driven van and was handled by a team of operators who parked outside the house to be cleaned. With the aid of several hundred feet of flexible hose extending from the cleaner through the windows into all the rooms, the machine sucked the dirt of decades from the carpets; at the first cleaning the weight of many such carpets was reduced by 50 per cent as the dirt was sucked away.
    Many attempts were made in Europe and America to produce a smaller and less expensive machine. Booth himself designed the chief British model in 1906, the Trolley- Vac, which was wheeled around the house on a trolley. Still elaborate, expensive and heavy, this machine could, however, be operated inside a room and was powered from an electric light fitting. It consisted of a sophisticated electric motor and a belt-driven rotary vacuum pump. Various hoses and fitments made possible the cleaning of many different surfaces and the dust was trapped in a cloth filter within a small metal canister. It was a superb vacuum cleaner but cost 35 guineas and weighed a hundredweight (50 kg), so it was difficult to take upstairs.
    Various alternative machines that were cheaper and lighter were devised, but none was truly efficient until a prototype that married a small electric motor to the machine was produced in 1907 in America.
    [br]
    Further Reading
    The Story of the World's First Vacuum Cleaner, Leatherhead: BSR (Housewares) Ltd. See also Hoover, William Henry.
    DY

    Biographical history of technology > Booth, Hubert Cecil

  • 14 Brinell, Johann August

    SUBJECT AREA: Metallurgy
    [br]
    b. 1849 Småland, Sweden
    d. 17 November 1925 Stockholm, Sweden
    [br]
    Swedish metallurgist, inventor of the well-known method of hardness measurement which uses a steel-ball indenter.
    [br]
    Brinell graduated as an engineer from Boräs Technical School, and his interest in metallurgy began to develop in 1875 when he became an engineer at the ironworks of Lesjöfors and came under the influence of Gustaf Ekman. In 1882 he was appointed Chief Engineer at the Fagersta Ironworks, where he became one of Sweden's leading experts in the manufacture and heat treatment of tool steels.
    His reputation in this field was established in 1885 when he published a paper on the structural changes which occurred in steels when they were heated and cooled, and he was among the first to recognize and define the critical points of steel and their importance in heat treatment. Some of these preliminary findings were first exhibited at Stockholm in 1897. His exhibit at the World Exhibition at Paris in 1900 was far more detailed and there he displayed for the first time his method of hardness determination using a steel-ball indenter. For these contributions he was awarded the French Grand Prix and also the Polhem Prize of the Swedish Technical Society.
    He was later concerned with evaluating and developing the iron-ore deposits of north Sweden and was one of the pioneers of the electric blast-furnace. In 1903 he became Chief Engineer of the Jernkontoret and remained there until 1914. In this capacity and as Editor of the Jernkontorets Annaler he made significant contributions to Swedish metallurgy. His pioneer work on abrasion resistance, undertaken long before the term tribology had been invented, gained him the Rinman Medal, awarded by the Jernkontoret in 1920.
    [br]
    Principal Honours and Distinctions
    Member of the Swedish Academy of Science 1902. Dr Honoris Causa, University of Upsala 1907. French Grand Prix, Paris World Exhibition 1900; Swedish Technical Society Polhem Prize 1900; Iron and Steel Institute Bessemer Medal 1907; Jernkontorets Rinman Medal 1920.
    Further Reading
    Axel Wahlberg, 1901, Journal of the Iron and Steel Institute 59:243 (the first English-language description of the Brinell Hardness Test).
    Machinery's Encyclopedia, 1917, Vol. III, New York: Industrial Press, pp. 527–40 (a very readable account of the Brinell test in relation to the other hardness tests available at the beginning of the twentieth century).
    Hardness Test Research Committee, 1916, Bibliography on hardness testing, Proceedings of the Institution of Mechanical Engineers.
    ASD

    Biographical history of technology > Brinell, Johann August

  • 15 Coade, Eleanor

    [br]
    b. 24 June 1733 Exeter, Devon, England
    d. 18 November 1821 Camberwell, London, England
    [br]
    English proprietor of the Coade Factory, making artificial stone.
    [br]
    Born Elinor Coade, she never married but adopted, as was customary in business in the eighteenth century, the courtesy title of Mrs. Following the bankruptcy and death of her father, George Coade, in Exeter, Eleanor and her mother (also called Eleanor) moved to London and founded the works at Lambeth, South London, in 1769 that later became famous as the Coade factory. The factory was located at King's Arms Stairs, Narrow Wall. During the eighteenth century, several attempts had been made in other businesses to manufacture a durable, malleable artificial stone that would be acceptable to architects for decorative use. These substances were not very successful, but Coade stone was different. Although stories are legion about the secret formula supposedly used in this artificial stone, modern methods have established the exact formula.
    Coade stone was a stoneware ceramic material fired in a kiln. The body was remarkable in that it shrank only 8 per cent in drying and firing: this was achieved by using a combination of china clay, sand, crushed glass and grog (i.e. crushed and ground, previously fired stoneware). The Coade formula thus included a considerable proportion of material that, having been fired once already, was unshrinkable. Mrs Coade's name for the firm, Coade's Lithodipyra Terra-Cotta or Artificial Stone Manufactory (where "Lithodipyra" is a term derived from three Greek words meaning "stone", "twice" and "fire"), made reference to the custom of including such material (such as in Josiah Wedgwood's basalt and jasper ware). The especially low rate of shrinkage rendered the material ideal for making extra-life-size statuary, and large architectural, decorative features to be incorporated into stone buildings.
    Coade stone was widely used for such purposes by leading architects in Britain and Ireland from the 1770s until the 1830s, including Robert Adam, Sir Charles Barry, Sir William Chambers, Sir John Soane, John Nash and James Wyatt. Some architects introduced the material abroad, as far as, for example, Charles Bulfinch's United States Bank in Boston, Massachusetts, and Charles Cameron's redecoration for the Empress Catherine of the great palace Tsarkoe Selo (now Pushkin), near St Petersburg. The material so resembles stone that it is often mistaken for it, but it is so hard and resistant to weather that it retains sharpness of detail much longer than the natural substance. The many famous British buildings where Coade stone was used include the Royal Hospital, Chelsea, Carlton House and the Sir John Soane Museum (all of which are located in London), St George's Chapel at Windsor, Alnwick Castle in Northumberland, and Culzean Castle in Ayrshire, Scotland.
    Apart from the qualities of the material, the Coade firm established a high reputation for the equally fine quality of its classical statuary. Mrs Coade employed excellent craftsmen such as the sculptor John Bacon (1740–99), whose work was mass-produced by the use of moulds. One famous example which was widely reproduced was the female caryatid from the south porch of the Erechtheion on the acropolis of Athens. A drawing of this had appeared in the second edition of Stuart and Revett's Antiquities of Athens in 1789, and many copies were made from the original Coade model; Soane used them more than once, for example on the Bank of England and his own houses in London.
    Eleanor Coade was a remarkable woman, and was important and influential on the neo-classical scene. She had close and amicable relations with leading architects of the day, notably Robert Adam and James Wyatt. The Coade factory was enlarged and altered over the years, but the site was finally cleared during 1949–50 in preparation for the establishment of the 1951 Festival of Britain.
    [br]
    Further Reading
    A.Kelly, 1990, Mrs Coade's Stone, pub. in conjunction with the Georgian Group (an interesting, carefully written history; includes a detailed appendix on architects who used Coade stone and buildings where surviving work may be seen).
    DY

    Biographical history of technology > Coade, Eleanor

  • 16 Craufurd, Henry William

    SUBJECT AREA: Metallurgy
    [br]
    fl. 1830s
    [br]
    English patentee of the process of coating iron with zinc (galvanized iron).
    [br]
    Although described as Commander of the Royal Navy, other personal details of Craufurd appear to be little known. His process for coating sheet iron with a protective layer of zinc, conveyed as a communication from abroad, was granted a patent in 1837. The details closely resembled, indeed are believed to have been based upon, those developed and patented in France in 1836 by Sorel, who had worked in collaboration with Ledru. There had been French interest in substituting zinc for tin as a coating for iron from 1742 with work by Malouin. Zinc-coated iron saucepans were produced in Rouen in the 1780s, but the work was later abandoned. Craufurd's patent directed that iron objects should be dipped into molten zinc, protected from volatilization by a layer of sal ammoniac (ammonium chloride, NH4Cl which also served as a flux. The quite misleading term "galvanizing" had already been introduced by Sorel for his process. Later its pro-tective properties were discovered to depend for effectiveness on the formation of a thin layer of zinc-iron alloy between the iron sheet and its zinc coating. Craufurd's patent was infringed in England soon after being granted, and was followed by several improvements, particularly those of Edmund Morewood, collaborating with George Rogers in five patents, of which four referred to methods of corrugation. The resulting production of zinc-coated iron implements, together with corrugated iron sheeting quickly adopted for building purposes, developed into an important industry of the West Midlands, Bristol, London and other parts of Britain.
    [br]
    Bibliography
    1837, British patent no. 7,355 (coating sheet iron with zinc).
    Further Reading
    H.W.Dickinson, 1943–4, "A study of galvanised and corrugated sheet metal", Transactions of the Newcomen Society 24:27–36 (the best and most concise account).
    JD

    Biographical history of technology > Craufurd, Henry William

  • 17 Deringer, Henry

    SUBJECT AREA: Weapons and armour
    [br]
    b. 26 October 1786 Easton, Pennsylvania, USA d. 1868
    [br]
    American gunsmith and inventor of the derringer [sic] pistol.
    [br]
    Deringer was the son of a gunsmith and was apprenticed at an early age to a firearms manufacturer in Richmond, Virginia. In 1806 he set up his own small-arms plant in Philadelphia, his contracts coming from the US Government. He concentrated primarily on long-barrelled, percussion-cap pistols designed to fit in the belt, but from 1825 devoted his main attention to the design and production of single-shot pistols small enough to fit in the pocket. These became very popular during the 1840s and several manufacturers took up the concept. It was after John Wilkes Booth used one to assassinate President Lincoln in 1865 that they became known by the generic term "derringer" as a result of a journalist's misspelling.
    CM

    Biographical history of technology > Deringer, Henry

  • 18 Harrison, James

    [br]
    b. 1816 Glasgow, Scotland
    d. 3 September 1893 Geelong, Victoria, Australia
    [br]
    Scottish pioneer of the transport of frozen meat.
    [br]
    James Harrison emigrated to Australia in 1834, and in 1840 settled in Geelong as a journalist. At one time he was editor of the Melbourne Age. In 1850 he began to devote his attention to the development of an ice-making scheme, erecting the first factory at Rodey Point, Barwin, in that year. In 1851 the Brewery Glasgow \& Co. in Bendigo, Victoria, installed the first Harrison refrigerator. He took out patents for his invention in 1856 and 1857, and visited London at about the same time. On his return to Australia he began experiments into the long-term freezing of meat. In 1873 he publicly exhibited the process in Melbourne and organized a banquet for the consumption of meat which had been in store for six months. In July of the same year the SS Norfolk sailed with a cargo of 20 tons of frozen mutton and beef, but this began to rot en route to London. The refrigeration plant was later put to use in a paraffin factory in London, but the failure ruined Harrison and took all his newspaper profits.
    [br]
    Further Reading
    J.T.Critchell, 1912, A History of the Frozen Meat Trade, London (gives a brief account of Harrison's abortive but essential part in the transport of frozen meat).
    AP

    Biographical history of technology > Harrison, James

  • 19 Korolov (Korolyev), Sergei Pavlovich

    SUBJECT AREA: Aerospace
    [br]
    b. 12 January 1907 (30 December 1906 Old Style) Zhitomir, Ukraine
    d. 14 January 1966 Moscow, Russia
    [br]
    Russian engineer and designer of air-and spacecraft.
    [br]
    His early life was spent in the Ukraine and he then studied at Tupolev's aeroplane institute in Moscow. In the mid-1930s, just before his thirtieth birthday, he joined the GIRD (Group Studying Rocket Propulsion) under Frederick Zander, a Latvian engineer, while earning a living designing aircraft in Tupolev's bureau. In 1934 he visited Konstantin Tsiolovsky. Soon after this, under the Soviet Armaments Minister, Mikhail N.Tukhachevsky, who was in favour of rocket weapons, financial support was available for the GIRD and Korolov was appointed General-Engineer (1-star) in the Soviet Army. In June 1937 the Armaments Minister and his whole staff were arrested under Stalin, but Korolov was saved by Tupolev and sent to a sharaska, or prison, near Moscow where he worked for four years on rocket-and jet-propelled aircraft, among other things. In 1946 he went with his superior, Valentin Glushko, to Germany where he watched the British test-firing of possibly three V-2s at Altenwaide, near Cuxhaven, in "Operation Backfire". They were not allowed within the wire enclosure. He remained in Germany to supervise the shipment of V-2 equipment and staff to Russia (it is possible that he underwent a second term of imprisonment from 1948), the Germans having been arrested in October 1946. He kept working in Russia until 1950 or the following year. He supervised the first Russian ballistic missile, R-1, in late 1947. Stalin died in 1953 and Korolov was rehabilitated, but freedom under Nikita Kruschev was almost as restrictive as imprisonment under Stalin. Kruschev would only refer to him as "the Chief Designer", never naming him, and would not let him go abroad or correspond with other rocket experts in the USA or Germany. Anything he published could only be under the name "Sergeyev". He continued to work on his R-7 without the approval that he sought for a satellite project. This was known as semyorka, or "old number seven". In January 1959 he added a booster stage to semyorka. He may have suffered confinement in the infamous Kolyma Gulag around this time. He designed all the Sputnik, Vostok and some of the Voshkod units and worked on the Proton space booster. In 1966 he underwent surgery performed by Dr Boris Petrovsky, then Soviet Minister of Health, for the removal, it is said, of tumours of the colon. In spite of the assistance of Dr Aleksandr Vishaevsky he bled to death on the operating table. The first moon landing (by robot) took place three weeks after his death and the first flight of the new Soyuz spacecraft a little later.
    [br]
    Further Reading
    Y.Golanov, 1975, Sergey Korolev. The Appren-ticeship of a Space Pioneer, Moscow: Mir.
    A.Romanov, 1976, Spacecraft Designers, Moscow: Novosti Press Agency. J.E.Oberg, 1981, Red Star in Orbit, New York: Random House.
    IMcN

    Biographical history of technology > Korolov (Korolyev), Sergei Pavlovich

  • 20 McCoy, Elijah

    [br]
    b. 1843 Colchester, Ontario, Canada
    d. 1929 Detroit, Michigan (?), USA
    [br]
    African-American inventor of steam-engine lubricators.
    [br]
    McCoy was born into a community of escaped African-American slaves. As a youth he went to Scotland and served an apprenticeship in Edinburgh in mechanical engineering. He returned to North America and ended up in Ypsilanti, Michigan, seeking employment at the headquarters of the Michigan Central Railroad Company. In spite of his training, the only job McCoy could obtain was that of locomotive fireman. Still, that enabled him to study at close quarters the problem of lubricating adequately the moving parts of a steam locomotive. Inefficient lubrication led to overheating, delays and even damage. In 1872 McCoy patented the first of his lubricating devices, applicable particularly to stationary engines. He assigned his patent rights to W. and S.C.Hamlin of Ypsilanti, from which he derived enough financial resources to develop his invention. A year later he patented an improved hydrostatic lubricator, which could be used for both stationary and locomotive engines, and went on to make further improvements. McCoy's lubricators were widely taken up by other railroads and his employers promoted him from the footplate to the task of giving instruction in the use of his lubricating equipment. Many others had been attempting to achieve the same result and many rival products were on the market, but none was superior to McCoy's, which came to be known as "the Real McCoy", a term that has since acquired a wider application than to engine lubricators. McCoy moved to Detroit, Michigan, as a patent consultant in the railroad business. Altogether, he took out over fifty patents for various inventions, so that he became one of the most prolific of nineteenth-century black inventors, whose activities had been so greatly stimulated by the freedoms they acquired after the American Civil War. His more valuable patents were assigned to investors, who formed the Elijah McCoy Manufacturing Company. McCoy himself, however, was not a major shareholder, so he seems not to have derived the benefit that was due to him.
    [br]
    Further Reading
    P.P.James, 1989, The Real McCoy: African-American Invention and Innovation 1619– 1930, Washington: Smithsonian Institution, pp. 73–5.
    LRD

    Biographical history of technology > McCoy, Elijah

См. также в других словарях:

  • subject — subject, the subject A term used in preference to alternatives such as ‘actor’ and ‘individual’ by writers in the structuralist tradition. Its use indicates a rejection of what such writers regard as the humanist assumptions carried by the… …   Dictionary of sociology

  • Subject — may refer to: *An area of interest, also called a topic meaning , thing you are talking or discussing about . It can also be termed as the area of discussion . See Lists of topics and Lists of basic topics. **An area of knowledge; **The focus of… …   Wikipedia

  • Term — Term, n. [F. terme, L. termen, inis, terminus, a boundary limit, end; akin to Gr. ?, ?. See {Thrum} a tuft, and cf. {Terminus}, {Determine}, {Exterminate}.] 1. That which limits the extent of anything; limit; extremity; bound; boundary. [1913… …   The Collaborative International Dictionary of English

  • Term fee — Term Term, n. [F. terme, L. termen, inis, terminus, a boundary limit, end; akin to Gr. ?, ?. See {Thrum} a tuft, and cf. {Terminus}, {Determine}, {Exterminate}.] 1. That which limits the extent of anything; limit; extremity; bound; boundary.… …   The Collaborative International Dictionary of English

  • Subject of labor — is a concept in Marxist political economy that refers to everything to which man s labor is directed. (Institute of Economics of the Academy of Sciences of the U.S.S.R., 1957) The subject of labor may be materials provided directly by nature like …   Wikipedia

  • Term limits in the United States — Term limits to offices in the United States:Historical backgroundTerm limits, or Rotation in office, dates back to the American Revolution, and prior to that to the democracies and republics of antiquity. The council of 500 in ancient Athens… …   Wikipedia

  • Subject — Sub*ject , n. [From L. subjectus, through an old form of F. sujet. See {Subject}, a.] 1. That which is placed under the authority, dominion, control, or influence of something else. [1913 Webster] 2. Specifically: One who is under the authority… …   The Collaborative International Dictionary of English

  • term-out option — International An option under a revolving facility (typically a short term revolving facility of 364 days) which allows the borrower to convert drawings under that facility into a term loan, subject, usually, to giving the lenders a specified… …   Law dictionary

  • Subject-to — is a way of purchasing property when there is an existing lien (i.e., Mortgage, Deed of Trust). It is defined as: Acquiring ownership to a property from a seller without paying off the existing liens secured against the property. It is a way of… …   Wikipedia

  • term — ► NOUN 1) a word or phrase used to describe a thing or to express a concept. 2) (terms) language used on a particular occasion: a protest in the strongest possible terms. 3) (terms) stipulated or agreed requirements or conditions. 4) (terms)… …   English terms dictionary

  • term — term1 [tʉrm] n. [ME terme < OFr < L terminus, a limit, boundary, end < IE * termṇ, a boundary stake < base * ter , to cross over, go beyond > TRANS , Gr terma, goal] 1. Archaic a point of time designating the beginning or end of a… …   English World dictionary

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»